Answer:
Option B
Explanation:
Plan
(i) $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}$
(ii) R= $\frac{abc}{4\triangle},r=\frac{\triangle}{s}$
where, R,r,$\triangle$ denote the circumradius , inradius and area of traingle , respectively
Let the sides of triangle be a,b, and c
Given x=a+b+c
y=ab
x2-c2=y
$\Rightarrow$ (a+b)2-c2=y
$\Rightarrow$ a2+b2+2ab-c2=ab
$\Rightarrow$ a2+b2-c2=-ab
$\Rightarrow $ $\frac{a^{2}+b^{2}-c^{2}}{2ab}=-\frac{1}{2}$
= $\cos 120^{0}$
$\Rightarrow$ $\angle C= \frac{2\pi}{3}$
$\therefore$ R= $\frac{abc}{4\triangle},r=\frac{\triangle}{s}$
$\Rightarrow$ $ \frac{r}{R}=\frac{4\triangle^{2}}{s(abc)}$
$=\frac{4\left[\frac{1}{2}ab\sin\left(\frac{2\pi}{3}\right)\right]^{2}}{\frac{x+y}{2}.y.c}$
$\therefore $ $ \frac{r}{R}=\frac{3y}{2c(x+c)}$